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Abstract

This paper presents the steady-state displacements and stresses in elastic half-space generated by a
surface point load moving with constant speed parallel to the free surface of the half-space. The basic
equations are solved by means of integral transforms, resulting in double fold integrals. A numerical
technique is proposed to calculate the inner fold integral in wave number domain based on the method of
steepest descent, and the time domain responses are obtained by Fourier synthesis over another
wavenumber domain. Numerical results for displacement and stress components on the surface and within
the half-space are presented for applied surface point loads with various subsonic speeds.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The determination of vibratory motion on a free surface and the depth generated by moving
vehicles has received considerable attention in the past. The fundamental problem of determining
the response of a half-space subjected to a concentrated moving load with constant speed is also of
interest because it can be applied to other important problems. For example, the study of the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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surface vibration caused by moving vehicles, the seismic responses of a canyon subjected to
obliquely incident waves, or the reduction of vibration induced by moving vehicles for an open
trench can be accomplished by this fundamental solution.

The two-dimensional problem of a line force moving with constant subsonic velocity over the
free surface of an elastic half-plane was first considered by Sneddon [1]. Cole and Huth [2]
considered the same problem when the velocity of the applied force is in the subsonic, transonic
and supersonic cases. An alternative approach to the high velocity was presented by Craggs [3].
Georgiadis and Barber [4] point out an error in the Cole/Huth solution, and rederive the correct
Cole/Huth solution in the transonic range. The problem of a line force moving over the surface of
a thick plate has been considered by Fulton and Sneddon [5] and Morley [6]. The transient
problem for a load which is suddenly applied on the surface of an elastic half-space and then
moves with constant velocity was considered by Payton [7,8].

The three-dimensional problem of the steady-state motion of a point load moving on the free
surface has been considered by Papadopoulos [9] and Eason [10] with different approaches.
Gakenheimer and Miklowitz [11] derived the transient responses in the interior of the elastic-space
for a normal point load which is suddenly applied at a point and then moves with constant
velocity along the free surface. Bakker et al. [12] revisited the same traveling point load problem,
and used a more straightforward Cagniard technique than the work by Gakenheimer and
Miklowitz [11] to obtain a solution, which allows greater insight into this important problem.
Barber [13] used the Smirnov — Sobolev technique to obtain a closed form solution for normal
displacements due to a normal point force moving at constant velocity over the surface of an
elastic half-space. Georgiadis and Lykotrafitis [14] obtained fundamental elastodynamic three-
dimensional solutions for loads moving steadily over the surface of a half-space based on the
technique of the Radon (integral) transform and elements of distribution theory. de Barros and
Luco [15] studied the steady-state responses within a multi-layered viscoelastic half-space
generated by a buried or surface load moving parallel to the surface of the half-space. For some
advanced applications, Georgiadis and Barber [16] examined the problem of the super-Rayleigh/
subseismic elastodynamic indentation paradox, considering the asymptotic at the end of the
contact region, and influence of contact inequalities. Brock and Georgiadis [17] proposed the
asymptotic solution for the surface displacement and temperature due to a line mechanical/heat
source that moves steadily over the surface of a half-space.

The present paper studies the steady-state response of elastic half-space subjected to a surface
load moving with subsonic constant velocity in a fixed horizontal direction, and focuses on the
study of the treatment for highly oscillating wave number integration. The approach proposed
here is based on a two-fold integral representation of the complete response in terms of
wavenumber. There are a variety of techniques for calculating the integral. Apsel and Luco [18]
have proposed a technique for evaluation of the wavenumber integral by replacing the integral
function with a quadratic polynomial, thus, resulting in a Filon-type quadrature. Kundu and Mal
[19] have proposed an adaptive Gauss quadrature to accomplish the same task. Xu and Mal [20]
have applied the Clenshaw–Curtis approach in which the integrand function is approximated with
Chebyshev polynomials and then integrated to produce a Filon-type quadrature. In this paper, a
numerical technique is proposed by using the modified steepest descent method to calculate the
inner fold integral in wavenumber domain based on the modified method of steepest descent,
which was proposed by Liao et al. [21,22] for the analysis of wave propagation in an elastic



ARTICLE IN PRESS

W.-I. Liao et al. / Journal of Sound and Vibration 284 (2005) 173–188 175
half-space. In the present work, the numerical integration analysis looks like the previous work by
Liao et al. [22], but for the moving load problem, the integrand in the integral differs from the
previous work. Then the associated steepest descent path (SDP), location of the branch points and
Rayleigh poles in the complex wavenumber domain appear in a different configuration compared
to the previous work. It is also interesting to study the numerical integration analysis of the
moving load problem in detail through the application of the modified steepest descent method.
After replacing the original integral path by the SDP, the wavenumber integral results in a
Gauss–Hermite-type quadrature, so that the oscillating character of the original integral can be
removed and only the non-oscillating one needs to be evaluated. The final response in the time
domain is obtained by Fourier synthesis over another wavenumber domain. Numerical results for
stress and displacement components on the free surface and within the half-space with different
moving load velocity are calculated and discussed.
2. Integral representation of the solution

Consider the half-space of a linear homogeneous isotropic elastic material with elastic constants
l, m, and mass density r. The displacement field u is related to the displacement potential
according to

u ¼ rfþ r� ð0;c; 0Þ þ r � r� ð0; w; 0Þ; (1)

where f is the longitudinal wave potential, and c and w are the transverse wave potentials. The
governing equations expressed by potentials are

c2pr
2f� €f ¼ 0;

c2sr
2c� €c ¼ 0;

c2sr
2w� €w ¼ 0; ð2Þ

where r2 ¼ q2=qx2 þ q2=qy2 þ q2=qz2 is the Laplacian operator, cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
and

cs ¼
ffiffiffiffiffiffiffiffi
m=r

p
denote the longitudinal and transverse wave speeds, respectively. The surface of the

half-space is free from tractions and radiation condition is imposed in the half-space. The point
load with amplitude Q acts on the free surface and moves with velocity c along the y-axis passing
through the origin point (0, 0, 0). The corresponding boundary conditions, e.g. a moving point
load applied in the z-direction of the free surface, can be written as

szzjz¼0 ¼ � QdðxÞdðy � ctÞ;

szxjz¼0 ¼ 0;

szy

��
z¼0

¼ 0; ð3Þ

where dðxÞ represents Dirac’s delta function. To solve the elastodynamic problem, Fourier
transforms are applied to the governing equations with respect to time t, and with respect to
horizontal coordinates x and y. Then Eq. (2) is transformed into

d2j̄
dz2

þ ðk2
p � k2

x � k2
yÞj̄ ¼ 0; (4a)
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d2c̄
dz2

þ ðk2
s � k2

x � k2
yÞc̄ ¼ 0; (4b)

d2w̄
dz2

þ ðk2
s � k2

x � k2
yÞw̄ ¼ 0; (4c)

where kp and ks denote the longitudinal and transverse wavenumber, respectively. The resulting
systems of ordinary differential equations with respect to the variable z are solved analytically
with boundary conditions of Eq. (3), and the radiation condition. Then the resulting integral
representations of displacement components are

ua
x ¼

�Q

8p3m

Z 1

�1

Z 1

�1

Z 1

�1

dðo� ckyÞ½�ikxAae�nz

� ikyBae�n0z þ ikxn0Cae�n0z�e�iðkxxþkyy�otÞdkx dky do; ð5aÞ

uay ¼
�Q

8p3m

Z 1

�1

Z 1

�1

Z 1

�1

dðo� ckyÞ½�ikyAae�nz

� ikxBae�n0z þ ikyn0Cae�n0z�e�iðkxxþkyy�otÞdkx dky do; ð5bÞ

ua
z ¼

�Q

8p3m

Z 1

�1

Z 1

�1

Z 1

�1

dðo� ckyÞ½�nAae�nz

þ k2Cae�n0z�e�iðkxxþkyy�otÞdkx dky do; ð5cÞ

where k2
¼ k2

x þ k2
y; n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

� k2
p

q
; u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

� k2
s

q
; In addition, the superscript a ¼ x; y or z

denotes the direction of the applied moving load, for a ¼ x

Ax ¼
2ikxu0

F ðkÞ
; Bx ¼

�iky

k2u0
; Cx ¼

ikxð2k2
� k2

s Þ

k2F ðkÞ
; (6)

for a ¼ y

Ay ¼
2ikyu0

FðkÞ
; By ¼

ikx

k2u0
; Cy ¼

ikyð2k2
� k2

s Þ

k2F ðkÞ
; (7)

and for a ¼ z

Az ¼
2k2

� k2
s

FðkÞ
; Bz ¼ 0; Cz ¼

2u
FðkÞ

; (8)

where

F ðkÞ ¼ ð2k2
� k2

s Þ
2
� 4k2uu0: (9)

By inspection of Eqs. (5a)–(5c) the inversion of the Fourier transform with respect to o can be
done analytically leaving the response in the form of a double integral with respect to
wavenumber in the x- and y-direction. Then Eqs. (5a)–(5c) yield

uax ¼
�Q

4p2m

Z 1

�1

Z 1

�1

�ikxAae�uz�ikyBae�u0z þ ikxu0Cae�u0z
i
e�iðkxxþkyy0Þ dkxdky;

h
(10a)
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ua
y ¼

�Q

4p2m

Z 1

�1

Z 1

�1

�ikyAae�uz�ikxBae�u0z þ ikyu0Cae�u0z
i
e�iðkxxþkyy0Þ dkx dky

h
; (10b)

uaz ¼
�Q

4p2m

Z 1

�1

Z 1

�1

�uAae�uz½ þk2Cae�u0z
i
e�iðkxxþkyy0Þ dkx dky; (10c)

where y0 ¼ y � ct; and define parameters

Mp ¼ c=cp; bp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M2

p

q
; (11a)

Ms ¼ c=cs; bs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M2

s

q
: (11b)

Then the radical function u and u0 can be rewritten as

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
yb

2
p

q
; (12a)

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
yb

2
s

q
: (12b)

In this study, we restrict the moving load velocity, c, below the Rayleigh wave speed, cR, of the
elastic half-space. Then the parameters bp and bs are real numbers and the branch points of
radical functions u and u0 become pure imaginary numbers. Once the displacement functions have
been determined, the corresponding Cartesian components of the stress fields are then calculated
using the displacement–stress relationship. The wavenumber integrals over the kx-domain are
evaluated numerically through the application of the modified method of steepest descent. The
application of this method to the moving load problem is presented in detail in the next section.
Finally, the time domain response is obtained through the Fourier synthesis of the ky-domain
components by the Fourier transform algorithm.

3. Numerical integration

In view of the integral representations of displacements from Eqs. (10a)–(10c) and the
associated stress fields, the integral for evaluation can be expressed as the general type:

I ¼

Z 1

�1

GpðkyÞ e
�ikyy0 dky þ

Z 1

�1

GsðkyÞ e
�ikyy0 dky; (13)

where

GpðkyÞ ¼

Z 1

�1

Epðkx; ky; u; u0Þ
Fðkx; ky; u; u0Þ

e�uz e�ikxx dkx; (14a)

GsðkyÞ ¼

Z 1

�1

Esðkx; ky; u; u0Þ
F ðkx; ky; u; u0Þ

e�u0z e�ikxx dkx: (14b)

To evaluate the inner fold integral over kx-domain conventionally, the wavenumber kx was
firstly normalized by another wavenumber ky, letting

k̄x ¼
kx

ky

: (15)
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Then the inner fold integral Gp and Gs becomes

GpðkyÞ ¼ ky

Z 1

�1

Epðk̄x; ky; ū; ū0Þ
Fðk̄x; ky; ū; ū0Þ

e�kyðūzþik̄xxÞ dkx (16a)

GsðkyÞ ¼ ky

Z 1

�1

Esðk̄x; ky; ū; ū0Þ
F ðk̄x; ky; ū; ū0Þ

e�kyðū0zþik̄xxÞ dkx (16b)

and the normalized radical functions ū and ū0 are

ū ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄
2

x þ b2
p

q
; (17a)

ū0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄
2

x þ b2
s

q
: (17b)

To illustrate the numerical procedure for calculating integral Gp and Gs in detail, let us consider
the integral Gp first and adopt the cylindrical coordinate, which is shown in Fig. 1:

x ¼ r cos y; (18a)

z ¼ r sin y: (18b)

Defining the phase function f pðk̄xÞ associated with the integral Gp by

f pðk̄xÞ ¼ ik̄x cos yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄
2

x þ b2
p

q
sin y (19)

Eq. (16a) can be expressed as

GpðkyÞ ¼ ky

Z 1

�1

Epðk̄x; ky; ū; ū0Þ
F ðk̄x; ky; ū; ū0Þ

e�ky f pðk̄xÞr dk̄x: (20)

It can be observed that the integrand is highly oscillatory and the effort of integration depends
on the location of the field point ðr; yÞ and the wavenumber, ky. From the classical asymptotic
analysis of the integral [23], the main contribution of the integral Gp comes from the saddle point
x

z

y 

r

θ

Half-space

Free-surface

c
Applied point load

Fig. 1. Moving point load in an elastic half-space.
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k̄op; which satisfies the condition

df pðk̄xÞ

dk̄x

�����
k̄x¼k̄op

¼ 0: (21)

Solving the above equation, we can find that the location of the saddle point depends on the
location of the field point and is given by

k̄op ¼ �ibp cos y: (22)

Based on the theory of complex variables, the original path of integration along the axis of real
k̄x can be deformed into a special equivalent path, namely, the SDP, which passes through the
saddle point k̄op; and for all points in the SDP satisfies the following relation:

f pðk̄xÞ � f pðk̄opÞ ¼ t2; (23)

where t is a real variable. Then by solving Eq. (23) we can obtain the relationship between k̄x and
t as

k̄x ¼ �i cos y ðt2 þ bpÞ þ t sin y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2bp

q
: (24)

The general form of the SDP is shown in Fig. 2. When the SDP does not encounter any branch
cuts and no Rayleigh pole is enclosed within the contour, based on the Cauchy theorem and
Jordan’s lemma, the integral Gp(ky) shown in Eq. (20) will be equivalent to

Gp ¼ kye
�rkybp

Z 1

�1

Ep

F
e�rkyt2 dk̄x

dt
dt

� 	
: (25)

Note that we have made use of the fact that

f pðk̄opÞ ¼ bp (26)

in the above derivation. It can be observed that along SDP the phase on each point remains
stationary, and that the integral Gp behaves as a decaying wave. The merits of the above
procedure are described as follows:
(a)
 The oscillating character that arises in the original integral has been removed from the
integral. This results in an integral of the Hermite-type, which converges faster than the
original one in view of the weighting factor e�rkyt2 :
(b)
 The deformation of the original path into the steepest descent path is exact, and the only
approximation comes from the truncation of the integral range, which depends on the values
of ky and r.
(c)
 The above procedure is valid uniformly either in the case of near to far field or in the case of
low-to-high frequency.
Owing to the presence of the branch points 
ibp; 
ibs; and Rayleigh poles 
ibR; where

bR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc=cRÞ

2
q

; and cR is the Rayleigh wave speed, the SDP associated with integral Gp may

encounter the branch cuts or enclose the Rayleigh pole. Taking this into consideration, the
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half-space is divided into the three regions as shown in Fig. 3, and denoted as region I–III. Their
boundaries are specified by
(i)
 Region I: yRoyop� yR; where yR ¼ cos�1 ðbR=bpÞ:

(ii)
 Region II: ysoyoyR or p� yRoyop� ys; where ys ¼ cos�1 ðbs=bpÞ:

(iii)
 Region III: 0oyoys or p� ysoyop:
When a typical point is located in Region I, the associated SDP does not encounter any branch
cuts and does not enclose the Rayleigh pole in the complex k̄x � plane: The associated SDP is
shown in Fig. 4(a). Therefore, the integral Gp can be evaluated by

Gp ¼ kye
�rkybp

Z 1

�1

Ep

F
e�rkyt2 dk̄x

dt
dt

� 	
: (27)

For a typical point located in Region II, the associated SDP shown in Fig. 4(b) will enclose the
Rayleigh pole will not encounter any branch cuts. Then the integral Gp is equivalent to

Gp ¼ kye
�rkybp

Z 1

�1

Ep

F
e�rkyt2 dk̄x

dt
dt

� 	

� sgnðcos yÞ2pi
Ep

F 0

����
k̄x¼�sgnðcos yÞ ibR

e�kyðūRzþbRx sgnðcos yÞÞ; ð28Þ

where

F 0 ¼
dF ðk̄xÞ

dk̄x

¼ k2
y 8k̄xð2k2

� k2
yðM

2
s þ ūū0Þ � 4k̄xk2 ū

ū0
þ

ū0

ū


 �� 	
(29)
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Fig. 3. The regions where the contribution of branch cut or pole should be taken into account or not taken into account

for the integral Gp.

(a) (b)

(c)

Fig. 4. The SDP associated with integral Gp for the field point located in (a) region I; (b) region II; (c) region III.
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and

ūR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

p � b2
R

q
(30)

The same should be considered for a typical field point located in Region III. The SDP encloses
the Rayleigh pole and intersects the branch cut of radical function ū0 (branch points 
ibs).
Therefore, a return loop must be added to account for the contribution from the branch cut. The
return loop shown in Fig. 4(c) comes from the saddle point k̄op; passes around the branch point

ibs in the proper manner, and returns to the saddle point. Then the integral Gp is equivalent to

Gp ¼ kye
�rkybp

Z 1

�1

Ep

F
e�rkyt2 dk̄x

dt
dt

� 	

� sgnðcos yÞ2pi
Ep

F 0

����
k̄x¼�sgnðcos yÞibR

e�kyðūRzþbRx sgnðcos yÞÞ

þ ky

Z
Gpc

Ep

F
e�kyðūzþik̄xxÞ dk̄x; ð31Þ

where Gpc denotes the return loop along the branch cut of the radical function ū0:
For the integral Gs, the same consideration as for the integral Gp should be made. The phase

function f sðk̄xÞ associated with the integral Gs is

f sðk̄xÞ ¼ ik̄x cos yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄
2

x þ b2
s

q
sin y: (32)

The original path is also deformed into a SDP with respect to the integral Gs, so all points in the
steepest descent path (SDP) satisfy the relationship

f sðk̄xÞ � f sðk̄osÞ ¼ t2 (33)

where k̄os ¼ �ibs cos y is the saddle point with respect to the phase function f sðk̄xÞ: From Eq.
(33), the relationship between k̄x and the real variable t can be written as

k̄x ¼ �i cos yðt2 þ bsÞ þ t sin y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2bs

q
: (34)

In view of the location of the saddle point k̄os ¼ �ibs cos y ð0pyppÞ; it is very straightforward
to know that the SDP may enclose the Rayleigh pole but will absolutely not encounter any branch
cuts. Thus, the half-space is divided into two regions as shown in Fig. 5, and denoted as Regions I
and II. The associated SDP with respect to Regions I and II are shown in Fig. 6(a) and (b),
respectively. Their boundaries and equivalent integrals Gs are expressed as follows:

(a) Region I, ynRoyop� ynR

Gs ¼ kye
�rkybs

Z 1

�1

Es

F
e�rkyt2 dk̄x

dt
dt

� 	
; (35)

where ynR ¼ cos�1 ðbR=bsÞ:
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integral Gs.

(a) (b)

Fig. 6. The SDP associated with integral Gs for the field point located in (a) region I; (b) region II.
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(b) Region II, yoynR or y4p� ynR

Gs ¼ kye
�rkybs

Z 1

�1

Es

F
e�rkyt2 dk̄x

dt
dt

� 	

� sgnðcos yÞ2pi
Es

F 0

����
k̄x¼�sgnðcos yÞibR

e�kyðū
0
RzþbRx sgnðcos yÞÞ ð36Þ

where ū0R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

s � b2
R

q
:
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After obtaining the integral value Gp and Gs in the kx wavenumber domain by the modified
steepest descent method, the final response in the time domain can be obtained by Fourier
synthesis over the ky wavenumber domain.
4. Numerical Results

The shape of displacement and stress pulses at a station of an elastic half-space subjected to a
surface point load moving along the positive y-axis are shown in Figs. 7(a)–(c). The numerical
results were calculated for an elastic half-space characterized by cp=1732 and cs=1000m/s. For
all figures, the Gaussian integral points aligned on the SDP are 128 points if the field point of
integral Gp is located in Region I, and 256 points if the field point is located in Region II or III.
For the integral Gs, the Gaussian integral points aligned on the SDP are 128 points for Region I,
and 256 points for Region II. In these figures, the dimensionless displacement U=(mr/Q)u and the
stress S=(r2/Q)s components are plotted against the dimensionless time t� ¼ cst=r; where Q is the
amplitude of the applied moving load, r is the radial distance from the observation point to the
origin of the half-space, u is the displacement component, and s is the stress component. The
instant t=0 corresponds to the time at which the point load passes through the coordinate y=0.
In Figs. 7(a)–(c), the superscript of displacement and stress components denotes the direction in
which the point load is applied. Displacement and stress components shown in Figs. 7(a)–(c)
correspond to a subsonic load velocity 700m/s (Ms=0.7) in the observation point located at (x, y,
z)=(0,0,10m). The comparison of displacement components by the present method with those
obtained by de Barros and Luco [15] is shown in Fig. 7(a), and it can be seen that the comparison
is excellent.

Fig. 8 shows the attenuation curve for maximum displacement amplitude in the three
direction of the free surface along the x-axis generated by a vertical load with moving
velocity c=100m/s (Ms=0.1), 400m/s (Ms=0.4) and 700m/s (Ms=0.7), respectively. From
those figures, the attenuated properties of maximum displacement along x-axis are observed
and show that the larger Ms causes a larger maximum displacement at all points along the
x-axis.
5. Concluding Remarks

This paper presents a procedure for the analysis of steady-state response in elastic half-space
generated by a surface sub-Rayleigh point load moving with constant speed. Results are presented
Fig. 7. (a) Normalized displacement components at an observation point (x,y,z)=(0,0,10m) for a point load moving

with velocity (Ms=0.7) along the positive y-axis over the surface of an elastic half-space, while displacements obtained

by de Barros and Luco [15] are shown with circles. The superscript denotes the direction of the point load. (b,c)

Normalized stress components at an observation point (x,y,z)=(0,0,10m) for a point load moving with velocity

(Ms=0.7) along the positive y-axis over the surface of an elastic half-space. The superscript denotes the direction of the

point load.
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(a) (b) (c)distance x (m) distance x (m) distance x (m)

Fig. 8. Attenuation curves for maximum amplitudes of: (a) x-direction; (b) y-direction; and (c) z-direction dis-

placements on the free surface along the x-axis by a vertical point load moving with velocity 100, 400 and 700m/s,

respectively.

(c)

Fig. 7. (Continued)

W.-I. Liao et al. / Journal of Sound and Vibration 284 (2005) 173–188186
for displacement and stress components on the surface and within the elastic half-space with
different observation points and load velocities. A technique is proposed to calculate the integral
in wavenumber domain based on the method of steepest descent. After replacing the original
integration path by the steepest descent path, the wavenumber integral results in a
Gauss–Hermite-type quadrature, and with non-oscillating integrand, it is very helpful in
computing efficiency. It is expected that the fundamental solution of the moving load problem
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presented here can be applied to certain applications in radiation, scattering and interaction
problems associated with moving disturbances.
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